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Abstract

Mutation analysis on model checking specifications is
a recent development. This approach mutates a specifi-
cation, then applies a model checker to compare the mu-
tants with the original specification to automatically gen-
erate tests or evaluate coverage. The properties of specifi-
cation mutation operators have not been explored in depth.
We report our work on theoretical and empirical compari-
son of these operators. Our future plans include studying
how the form of a specification influences the results, find-
ing relations between different operators, and validating the
method against independent metrics.

Keywords: specification mutation, mutation operators,
test generation, model checking.

1 Introduction

Mutation analysis is typically performed on program
code. However, a specification provides additional valuable
information. For instance, specification-based testing may
detect a missing path error [15], that is, a situation when an
implementation neglects an aspect of a problem and a sec-
tion of code is altogether absent. Further, code-based anal-
ysis is not possible for some systems because testers do not
have access to the source code. Analysis on a specification
can also proceed independently of program development,
and any results should apply to all implementations of the
specification, e.g. ports to other systems. Model checking
and specification-based mutation analysis are combined in
a novel method to automatically produce tests from formal
specifications [3] and measure test coverage [2]. We briefly
introduce model checking here.

1.1 Model Checking

Model checking is a formal technique based on state ex-
ploration. Input to a model checker has two parts. One

part is a state machine defined in terms of variables, initial
values for the variables, environmental assumptions, and
a description of the conditions under which variables may
change value. The other part is a set of temporal logic ex-
pressions over states and execution paths.

Temporal logic is an extension of classical logic for deal-
ing with systems that evolve with time. The properties such
as “It will be the case thatp”, “It will always be the case
thatp” can be compactly specified in temporal logic.

Conceptually, a model checker visits all reachable states
and verifies that each temporal logic expression is consistent
with the state machine, i.e., satisfied over all paths. If an
expression is not satisfied, the model checker generates a
counterexample in the form of a trace or sequence of states,
if possible.

The SMV Model Checker

We use the SMV [19] model checker. Its temporal logic
is Computation Tree Logic (CTL) [11]. Typical formulas in
CTL include:

• AG safe

All reachable states are safe.

• AG (request → AF response)

A request is always followed by a response sometime
in the future.

Figure 1 is a short SMV example. “Request” is an in-
put variable, and “state” is a variable with possible values
“ready” and “busy.” The initial value of state is “ready.”
The next state is “busy” if the state is “ready” and there is a
request. Otherwise the next state is “ready” or “busy” non-
deterministically. The SPEC clause is a CTL formula which
states that whenever there is a request, state will eventually
become “busy.”

Some might object that SMV’s description language is
at too low a level for wide-spread use, and we agree. A



MODULE main
VAR

request : boolean;
state : {ready, busy};

ASSIGN
init(state) := ready;
next(state) := case

state = ready & request : busy;
1 : {ready, busy};

esac;
SPEC AG (request -> AF state = busy)

Figure 1. A Short SMV Example

practical system must extract state machines and tempo-
ral logic expressions from higher level descriptions such as
SCR specifications [4], MATLAB stateflows [5], or UML
state diagrams.

Notice that choosing a different model checker naturally
leads to a different specification language and therefore po-
tentially different mutation operators and effects. We com-
ment on the interaction between the form of a specification
and the results of mutation analysis in Section 4.

In Section 2, we describe how we use a model checker
and mutation analysis on specifications to generate tests. In
Section 3, we report some of our findings, such as, which
mutation operators are better than others in terms of cov-
erage and the number of mutants. Finally in Section 4 we
present some open questions and the research directions we
have planned to take to address them.

2 Mutations for Test Generation

Ammann and Black used mutation analysis, along with
model checking, to automatically produce tests from formal
specifications [3] and measure test coverage [2]. Since our
work has been in the framework of this approach, we briefly
explain it here.

One begins with a finite state machine representation, or
specification, of the system to be tested. Each transition of
the state machine is reflected as a CTL clause. For instance,
the first case of the state variable in Figure 1 may be ex-
pressed as the following clause.

SPEC AG (state = ready& request→ AX state = busy)

Methods of turning order-dependent guards into order-
independent CTL, expressing constructs which have no par-
allel in CTL, making the default case explicit, and min-
imizing expressions are given in [2]. The set of clauses
derived from all state machine transitions, which are con-
sistent with the state machine, are combined with any pre-
existing clauses to serve as the specification.

Although other test criteria1 could be applied [8, 14], we
confine ourselves here to a specification mutation adequacy
criterion. Simply stated, the criterion is that a test set must
kill all mutations of a specification produced with some set
of mutation operators. A mutant is killed if the mutant CTL
clause is shown to be inconsistent with the trace, or history
of execution states, of a test case. An equivalent, or consis-
tent, mutant is true for all traces.

For program-based mutation analysis, detecting equiva-
lent mutants is, in general, an undecidable problem. How-
ever, to use model checkers we restrict ourselves to a fi-
nite domain in which equivalent mutant identification is de-
cidable. In fact, model checkers are designed to perform
this equivalence check efficiently. The model checker finds
equivalent mutants to be consistent with the state machine,
so they may be automatically discarded.

To generate tests, one mutation operator is applied to all
the CTL clauses. Applying each mutation operator in turn
yields a set of mutant clauses. The model checker then com-
pares the original state machine specification with the mu-
tants. When the model checker finds a clause to be incon-
sistent, it produces a counterexample if possible. The coun-
terexamples contain both stimulus and expected values, so
they may be automatically converted to complete test cases.
To reduce the number of tests, duplicate counterexamples
are combined, and counterexamples which are prefixes of
others are discarded.

Note that the number and type of mutation operators, as
well as the form of the CTL clauses, influences the number
and breadth of tests produced.

A variant of this approach may be used to evaluate cov-
erage of a test set. Each test is turned into a finite state ma-
chine constrained to express only the execution sequence
of that test. The model checker compares each constrained
finite state machine with the set of mutants produced previ-
ously. A mutation adequacy coverage metric is the number
of mutants killed divided by the total number of mutants.
This simple metric may be made more precise and accu-
rate by removing consistent mutants and all but one of se-
mantically duplicate mutants, as explained in [2]. LetN be
the number of unique, inconsistent mutants generated by all
operators, andk be the number of mutants killed. The cov-
erage isk/N . We use this metric to compare operators in
Section 3.4.

2.1 Applicability

Model checking, a vital part of the method, can be ap-
plied to specifications for large software systems, such as
TCAS II [9].

1After [15], a test criterion is a decision about what properties of a
specification must be exercised to constitute a thorough test.



To avoid the model checker’s state space explosion prob-
lem, several approaches are used, such as abstraction, par-
tial order reduction, and symmetry [10]. A reduction called
finite focus was proposed to increase feasibility of model
checking for test set generation [1]. In that reduction, some
finite number of states is mapped one-to-one to states in the
reduced specification, while all other states are mapped to a
single state.

2.2 Related Work on Specification Mutation

Gopal and Budd [16] applied a set of mutation opera-
tors to specifications given in predicate calculus form. The
method relies on having a working implementation, as the
program under test must be executed in order to generate
test output. Woodward [24] investigated mutation opera-
tors for algebraic specifications. Weyuker et. al [23] pro-
posed strategies for generating test data from the specifica-
tions represented by Boolean formulas and assessed their
effectiveness using mutation analysis.

Fabbri et. al [12] devised a mutation model for finite
state machines and used the mutation analysis criterion to
evaluate the adequacy of the tests produced by standard fi-
nite state machine test sequence generation methods. Fabbri
et. al [13] categorized mutation operators for different com-
ponents of Statecharts specifications and provided strategies
to abstract and incrementally test the components. Muta-
tion analysis in the context of protocol specifications writ-
ten in Estelle, an extended finite state machine formalism,
was studied in [21].

3 Specification Mutation Operators

Ammann and Black defined some mutation operators,
but did not consider the relative merits of the operators.
We describe a set of mutation operators we developed for
formal specifications together with their respective fault
classes. We investigate the relationships between detection
conditions for several fault classes analytically and compare
the effectiveness of the mutation operators experimentally.
A detailed description of the results presented in this Sec-
tion can be found in [7].

3.1 Categories of Mutation Operators

Mutation categories should model potential faults [24];
therefore, it is important to recognize different types of
faults. We design each mutation operator to uncover faults
belonging to the corresponding fault class.

Some of these fault classes are related to the classes
forming Kuhn’s hierarchy. We use a term “simple ex-
pression” that closely corresponds to the Boolean variable
in [18]. A simple expression is a Boolean expression that

has no Boolean operators. For example, relational expres-
sions and Boolean variables are simple expressions. (Other
commonly used terms are “clause” and “condition”).

Each fault class has a corresponding mutation operator.
Applying a mutation operator gives rise to a fault in that
class. For example, instances of the missing condition fault
(MCF) class can be generated by a missing condition op-
erator (MCO). Note that the abbreviation of the mutation
operator ends in O, and the abbreviation of the correspond-
ing fault class ends in F.

Although mutation operators are independent of any par-
ticular specification notation, here we present them for CTL
specifications. Table 1 contains mutation operators for com-
mon fault classes and selected illustrative mutants generated
from three formulas: the “SPEC” clause in Figure 1, the for-
mulaAG (x & y → z) (for ASO), and the formulaAG
(WaterPres < 100) (for RRO).

Operators and Example Mutants
ORO Operand Replacement

AG (request→ AF state = ready)
SNO Simple Expression Negation

AG (!request→ AF state = busy)
ENO Expression Negation

AG (!(request→ AF state = busy))
LRO Logical Operator Replacement

AG (request& AF state = busy)
RRO Relational Operator Replacement

AG (WaterPres<= 100)
MCO Missing Condition

AG AF state = busy
STO Stuck-At

AG (request→ AF 1)
ASO Associative Shift

AG (x & (y→ z))

Table 1. Mutation Operators and their Illustra-
tive Mutants.

The function of some operators can be easily guessed
from the name; we briefly explain what other, less obvi-
ous operators do. ORO replaces an operand by another
syntactically legal operand. It does not replace a number
with another number, since this may result in too many mu-
tants. The current implementation of the operator handles
two kinds of operands: state variables and symbolic con-
stants. State variables may be of Boolean, scalar or integer
type. The value of a scalar variable is drawn from a finite set
of constants. An integer variable takes values from a finite
range. An SMV specification may also contain symbolic
constants defined by the user to represent integers.

MCO deletes simple expressions from conjunctions, dis-
junctions, and implications. STO replaces a simple expres-



sion with 0 and 1. ASO changes the association between
variables, e.g.,x→ y1y2y3 is replaced with(x→ y1)y2y3.

If the number of atoms (variables and constants) in a
specification isV and the number of value references isR,
ORO results inO(V ∗ R) mutants, whereas SNO, LRO,
MCO, STO, ASO and RRO result inO(R) mutants.

ORO+ operator, a combination of ORO and RRO, gen-
erates a class of faults closely matching VRF in [18].

Additionally, we defined Simple Expression Replace-
ment Operator (SRO) which replaces a simple expression
by every other syntactically valid simple expression of
atoms in the model. This operator generates a class of faults
identical to VRF. SRO sometimes generates higher order
mutants, so by Woodward’s principle [24], it should not be
used for test generation.

We analyzed the relationships between several fault
classes and studied the mutation operators experimentally.

3.2 Analysis of Fault Classes

Our operators model fault classes similar to those ana-
lyzed in Kuhn [18]. By comparing the conditions under
which different types of faults are detected, Kuhn derived a
hierarchy of fault classes. We extended Kuhn’s analysis and
tied it to mutation operators.

The detection conditions for a predicateP are the condi-
tions under which a change toP affects the value ofP . A
test detects an error if and only if a faulty predicateP ′ eval-
uates to a different value than the correct predicateP . To
simplify analysis, we only considered specificationsS with
formulas in disjunctive normal form (DNF).

Let SFAULT be the detection conditions for fault class
FAULT . We discovered the following relationships:

SSRF → SSNF → SENF

→
SSTF → SMCF

Formal analysis is presented in [7]. Informally, to de-
termine the detection conditions for an arbitrary fault in a
particular fault class, an exclusive-or of an original specifi-
cation and its faulty version is computed.

It follows from the relationships, for instance, that a test
that detects a Simple Expression Replacement Fault (SRF)
for a simple expression in a predicate, also detects a Simple
Expression Negation Fault (SNF) for the same simple ex-
pression. Hence, SRO detects SNF. Also since ORO+ can
be considered as a practical approximation to SRO, ORO+

is very likely to detect SNF.

3.3 Mutation Generator

To study the mutation operators and empirically confirm
the theoretical results above, we developed an extensible
tool for systematically making small syntactic changes to
SMV specifications.

The tool uses portions of SMV code: the parser, abstract
syntax tree (AST) manipulation routines and low level func-
tionalities, such as dynamic memory allocation and manip-
ulation of data structures (e.g., hash tables).

Mutation generator performs the following steps:

1. Parse a given SMV file and build a tree data structure
in memory.

2. Process the tree to extract information necessary for
performing mutations, e.g., collect information about
types and domains of variables.

3. For each selected mutation operator, traverse the tree
invoking the corresponding mutation routine. When
the routine recognizes an opportunity for a mutation, it
creates a mutant. The mutant is then written to a file.

Resulting individual mutations may be left in individual
SMV files or written to a single file. The former yields a
large number of files. The overhead of starting a new SMV
process for each mutant is intolerable even for specifications
of moderate size. Since SMV builds a state machine tran-
sition relation for a given input file only once and checks
CTL formulas independently, using an option that writes
mutations into a single file results in very efficient process-
ing.

The tool allows us to selectively apply mutation opera-
tors. It can be extended to add new operators. In addition,
the mutation generator optionally mutates state machines to
generate tests which a correct implementation should fail.

The source code and documentation are available from
the authors.

3.4 Empirical Comparison of Operators

We compared the mutation operators in terms of the
number of test cases produced and the specification cov-
erage. We ran experiments on several sample SMV speci-
fications. Below we present the results for Safety Injection
specification [6]. The results for other samples were similar.
After reflection, this specification contains 22 CTL formu-
las and 5 variables, including a Boolean, 3 scalars, and an
integer which takes values between 0 and 200, but is only
compared with 2 different symbolic constants.

Out of a total of 730 mutants generated by applying all
mutation operators to the specification (since SNO mutants



Counter- Unique
Operator Mutants examples Traces Coverage
ORO+ 202 99 21 100%
ORO 130 63 17 94.2%
SNO 83 51 15 90.7%
ENO 144 104 15 90.7%
LRO 122 82 10 83.7%
RRO 72 36 10 50.0%
MCO 79 50 13 87.2%
STO 166 51 15 90.7%
ASO 17 17 5 47.7%

Table 2. Safety injection example results.

are a subset of ENO mutants, we did not include SNO mu-
tants in the total), 86 were semantically unique, inconsis-
tent. The method produced 21 unique test cases or traces.

We present details in Table 2. “Mutants” is the total num-
ber of mutants generated by each operator, including con-
sistent and duplicate mutants. Next we give the number of
counterexamples found in the SMV runs. “Unique traces”
is the number of traces after duplicate traces and prefixes are
removed. “Coverage” is the metric described in Section 2.

ORO+ generates the largest number of mutants, but pro-
vides the same set of test cases as all the operators com-
bined. Consequently, it has 100% coverage.

SNO provides second best coverage while generating
significantly fewer mutants.

We defineUTOPER to be the set of unique traces gener-
ated by mutation operatorOPER. For the Safety Injec-
tion specification, as well as several other examples, we
found the following relationships between the sets of unique
traces:

UTORO ⊇ UTSNO ⊇ UTENO
⊇

UTSTO ⊇ UTMCO

These results agree with the analysis in Section 3.2. In
particular, they support the idea that ORO is sufficient to
detect faults in ORF, SNF, and ENF. Therefore, the Sim-
ple Expression Negation Operator (SNO) and Expression
Negation Operator (ENO) are not needed if the Operand
Replacement Operator (ORO) is used.

The above hierarchy is not guaranteed to hold for speci-
fications with formulas not in disjunctive normal form. We
discuss this in the following Section.

4 Open Questions

Based on our current understanding of the method and
its challenges, we define the following research topics and

questions.

4.1 How Does Form Influence Results?

Semantically equivalent specifications may be written in
different ways. Since mutation analysis makes syntactic
changes, the results may depend on what form the speci-
fication is in.

Form of Specifications

Kuhn’s analytical technique applies to specifications in
restricted form, i.e., with formulas in disjunctive normal
form (DNF). Realistic specifications are generally not in
DNF, and the mutants of a DNF representation are signif-
icantly different from the mutants of the original.

Consequently, if we apply mutation operators to the un-
altered specification, the theoretical results do not strictly
apply. We will empirically study the degree to which the
test set generated from a specification with formulas in DNF
differs from the test set produced from an original specifica-
tion. To study this, we will mechanically convert specifica-
tion formulas to DNF, then compare the test sets generated
from original with those from the converted specifications.

Specification Languages

Although we use SMV, the method is not limited to any
particular type of model checker. Most of the interest has
centered around two types of model checkers [22]: branch-
ing time model checkers for Computation Tree Logic (CTL)
and linear time model checkers for the propositional Linear
Temporal Logic (LTL). SPIN [17] is a popular LTL model
checker. We plan to study whether our research is applica-
ble to both CTL and LTL model checkers.

4.2 What is the Relation Between Operators?

This has different facets, in particular, what is the trade
off between choosing some operators which produce more
mutants, but give better coverage, and performing selec-
tive mutation without the most expensive operators, that is,
choosing operators which produce far fewer mutants, but
give slightly worse coverage. Using Kuhn’s analytical tech-
nique, we found the subsumption relationship between sev-
eral operators. Subsumed operator does not need to be used
if the subsuming operator is applied. We will look for such
relationships for other operators. We are also interested in
discovering other analytical techniques for comparing mu-
tation operators. Finally, are some operators better for dif-
ferent applications, sizes or forms of specifications? The
latter was discussed above.



New Operators and Sets of Operators

Efficiency of the test generation and evaluation method
is determined, in part, by the cost of mutation. We plan
to extend our work on comparing mutation operators based
on their coverage and the number of mutants generated. We
found that ORO+ gives maximum coverage, and SNO gives
very good coverage using far fewer mutants. We will look
for other operators or sets of operators which provide high
fault detection capabilities at reduced cost. We will extend
the mutation generator program to apply a richer set of mu-
tation operators to SMV specifications.

Experimental Base

The Safety Injection specification used in this paper has
only five variables and a single module. However, many re-
alistic specifications are composed of a number of modules
and contain dozens of variables. To verify scalability of the
method and applicability of the experimental results to re-
alistic specifications, we plan to use larger specifications,
such as the Flight Guidance System [20] and other specifi-
cations from industry. By improving the mutation generator
to handle the general SMV syntax, we will extend the pool
of specifications available for our experiments.

4.3 How Does the Method Compare with Others?

We want to compare the coverage of specification muta-
tion analysis with existing methods to get some idea of the
quality of this method.

An objective comparison of the specification-based mu-
tation analysis with commonly accepted criteria is neces-
sary. Our goal is to reduce the number of faults in the actual
programs written from the formal specifications. Therefore,
it is necessary to study usefulness of the tests generated
from formal specifications for detecting bugs in the corre-
sponding implementations.

Many coverage measures exist [25]. Branch coverage of
generated tests for Cruise Control example was examined
in [3]. Branch coverage (decision coverage) checks whether
boolean expressions tested in control structures evaluated to
both true and false.

We plan to investigate the program-based coverage of the
tests using several coverage metrics, in particular, a prac-
tical variation of path coverage, such as length-n subpath
coverage which checks whether all subpaths of length less
than or equal ton in a program have been followed. Path
coverage metric is powerful yet unrelated to mutation anal-
ysis, hence it is an important standard measure. Another
possible measure is a fault-based coverage metric.

5 Conclusions

Standard mutation analysis is based on program source
code. In contrast, a recent mutation analysis scheme uses
model checkers to automatically generate complete test sets
from formal specifications and to evaluate coverage of ex-
isting test sets. Using a model checker avoids the problem
of equivalent mutants, since model checking is decidable,
and takes advantage of 20 years of industrial model check-
ing experience.

We described the specification-based mutation analysis
method and reported our recent work: defining a set of spec-
ification mutation operators in the context of this method
and comparing them based on their effectiveness and cost.

We posed three questions to confirm the practicality of
this method: how does form influence results, what is the
relation between mutation operators, and how does this
method compare with others? We also outlined some of
our research planned to address these questions.
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